A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm

نویسندگان

  • Özgür Kisi
  • Jalal Shiri
  • Sepideh Karimi
  • Shahaboddin Shamshirband
  • Shervin Motamedi
  • Dalibor Petkovic
  • Roslan Hashim
چکیده

Forecasting lake level at various horizons is a critical issue in navigation, water resource planning and catchment management. In this article, multistep ahead predictive models of predicting daily lake levels for three prediction horizons were created. The models were developed using a novel method based on support vector machine (SVM) coupled with firefly algorithm (FA). The FAwas applied to estimate the optimal SVM parameters. Daily water-level data fromUrmia Lake in northwestern Iran were used to train, test and validate the used technique. The prediction results of the SVM–FAmodels were compared to the genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results showed that an improvement in the predictive accuracy and capability of generalization can be achieved by the SVM–FA approach in comparison to the GP and ANN in 1 day ahead lake level forecast. Moreover, the findings indicated that the developed SVM–FA models can be used with confidence for further work on formulating a novel model of predictive strategy for lake level prediction. © 2015 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron

Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...

متن کامل

Improvement of Support Vector Machine and Random Forest Algorithm in Predicting Khorramabad River Flow Uusing Non-uniform De-Noising of data and Simplex Algorithm

In this study, in order to simulate the monthly flow of the Khorramabad River, the time series of this river was decomposed into three levels using the wavelet of Daubechies-3, during the period of 1955-2014. Based on this, it was found that there is a Non-uniform noise that includes two periods of time in this signal, with the October 2008 border which required that the signal be become non-un...

متن کامل

Assessment the Performance of Support Vector Machine and Artificial Neural Network Systems for Regional Flood Frequency Analysis (A Case Study: Namak Lake Watershed)

Flood discharge estimation with different return periods is one of important factors for water structures design and installation. On the other hand, a lot of rivers existing in Iran watersheds have no complete and accurate hydrometric data. In these cases, one of the suitable solutions to estimate peak discharges with different return periods is the regional flood analysis. In this research, 5...

متن کامل

Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)

     In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...

متن کامل

Identification areas with inundation potential for urban runoff harvesting using the support vector machine model

     Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 270  شماره 

صفحات  -

تاریخ انتشار 2015